Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
Analysis:
for "rgtae" and "great", compare the following Recursively
r|gtae, g|reat, r|gtae, grea|t,
Rg|tae, gr|eat, rg|tae, gre|at,
rgt|ae, gre|at, rgt|ae, gr|eat,
Rgta|e, grea|t, rgta|e, g|reat
bool isScramble(string s1, string s2) {
if (s1.size() != s2.size())
return false;
else if (s1 == s2)
return true;
else
{
unordered_map<char, int> m;
for (int i=0; i<s1.size(); i++)
m[s1[i]]++;
for (int i=0; i<s2.size(); i++)
{
if (m.find(s2[i]) == m.end() || m[s2[i]] <= 0)
return false;
m[s2[i]]--;
}
for(int i=1; i<s1.size();i++)
{
if ((isScramble(s1.substr(0,i),s2.substr(0,i)) && isScramble(s1.substr(i),s2.substr(i))) ||
(isScramble(s1.substr(0,i),s2.substr(s1.size() - i)) && isScramble(s1.substr(i),s2.substr(0,s1.size() - i))))
return true;
}
return false;
}
}