Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
A solution set is:
2,3,6,7
and target 7
, A solution set is:
[7]
[2, 2, 3]
Analysis:
It is basically to find all subset and save the results when target = 0. Notice that since the number could be used unlimited time, so in the code, dfs call should be i rather than i+1. The current A[i] could be used until sum > n and till then, i = i + 1.
class Solution {
public:
void dfs(vector<vector<int> >& ret, int target, int m, vector<int>& candidates, vector<int>& nums)
{
if (target == 0)
{
ret.push_back(nums);
}
else if (target < 0)
{
return;
}
else
{
for (int i = m; i < candidates.size(); i++)
{
nums.push_back(candidates[i]);
dfs(ret, target -candidates[i], i, candidates, nums);
nums.pop_back();
}
}
}
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<vector<int> > ret;
vector<int> nums;
dfs(ret, target, 0, candidates, nums);
return ret;
}
};
No comments:
Post a Comment